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Group symmetries in two-body random matrix ensembles generating order out of complexity
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The two-body random matrix ensembles with spin TBRE-s and in a singlej shell TBRE-j introduced
recently in the context of ground state structures in complex interacting particle systems, possess
U(N).U(N/2)^ SU(2) and U(N).O(3) group symmetries, respectively, withN the number of single par-
ticle states. It is shown that both these group symmetries give rise to simplicities in the ground state structures
but in different ways.
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I. INTRODUCTION

There is now new interest in investigating two-body ra
dom matrix ensembles~TBRE! with various deformations
@1#. Early formulation of TBRE is due to French, Bohiga
Flores, and their co-workers@2#. Recently, many researc
groups have pointed out that TBRE with extra informati
provide a framework for understanding the structure of lev
in the ground state domain of complex isolated finite int
acting particle systems such as atomic nuclei, quantum d
etc. For example, in nuclei the focus is in using the nucl
shell model as a laboratory for deriving or testing vario
predictions of extended TBRE’s for order out of chaos in
ground state domain, localization measures such as the i
mation entropy, Breit-Wigner to Gaussian transition
strength functions, nature of Gamow-Teller and other tran
tion strength sums, and so on@1,3–6#. Similarly, deformed
TBRE are used recently in the description of observed c
ductance peak spacing and peak height distributions in C
lomb blockade quantum dots@7#, in the study of the role of
interaction fluctuations on their ground state spin@8,9# etc. In
the simplest form, TBRE is defined for spinless fermions~or
Bosons! and here the interactions, that are two body are r
resented by a random matrix in two-particle spaces
propagated to many-particle spaces by using the geomet
the space~note that one considersm particles inN single
particle states and constructs them particle states as direc
products of single particle states!. One class of extension o
TBRE is to impose group symmetries on the two-body int
action, they are called TBRE-sym@1#. Two different types of
TBRE-sym are discussed in this paper.

Recently, Jacquod and Stone@8,9# and Kaplanet al. @10#
considered TBRE with spin degree of freedom~called
TBRE-s! and discussed the ground state magnetization
disordered systems such as quantum dots and the gr
state spin structure of a general complex interacting part
system, respectively. On the other hand, Mulhallet al. @4#
introduced a singlej-shell model withm-particle states hav
ing good angular momentum~J! and the two-body random
interaction~TBRE-j!. Using TBRE-j a basis is given for the
observed dominance ofJ50 ground states in many nuclea
shell model and interacting boson model calculations. T
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results in@4,8–10# are based on the near Gaussian form
the density of states„r(E)… in the two models and by deriv
ing easy to understand forms for the centroids, variances,
lower order shape parameters. Towards this end, for
TBRE-s, in @8–10# some counting arguments are employ
while for the TBRE-j, cranking model and Fermi occupan
cies are used@4#. The purpose of the present paper is
reexamine the results of the two TBRE’s from the standpo
of their group structure. First, there is a U(N) group operat-
ing in them-particle spaces. For TBRE with spinless ferm
ons, the relevance of this U(N) group structure is pointed ou
in a recent publication@5#. With the U(N) group, it is seen
that TBRE-s and TBRE-j possess U(N).U(N/2)^ SU(2)
and U(N).O(3) group structures, respectively. Due to the
different group symmetries, the origin of simplicities in th
two cases are quite different. Results for TBRE-s are given in
Sec. II and for TBRE-j in Sec. III. Finally, Sec. IV gives
some concluding remarks and future outlook.

II. TWO-BODY RANDOM MATRIX ENSEMBLES
WITH SPIN

A. Variances for TBRE-s and the ground state structure

Let us considerm fermions inV number of single particle
~SP! levels each doubly degenerate~thusN52V! with spin
s5 1

2 andsz56 1
2 . The number of levelsd(m,S) with fixed

total m-particle spinS is easily determined by considerin
m1 particles withsz5

1
2 andm2 with sz52 1

2 . The dimension
~number of states! for a fixed (m1 ,m2) is simply

D~m1 ,m2!5S V
m1

D S V
m2

D⇒D~m,Sz!;

m5m11m2 and Sz5
~m12m2!

2
.

Now the fixed-S dimension d(m,S)5D(m,Sz5S)
2D(m,Sz5S11) is

d~m,S!5
~2S11!

~V11!
S V11
m/21S11D S V11

m/22SD . ~1!
©2002 The American Physical Society30-1
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Note that

(
S

~2S11!d~m,S!5S N
mD .

With Sa good quantum number, the HamiltonianH ~which is
two body or (112) body! has U(N).U(N/2)^ SU(2)
group symmetry and this is well known@11–13#. All the
m-particle states belong to the totally antisymmetric rep
sentation of U(N) and the spinS is generated by the SU~2!
group. The direct product group structure immediately giv
the result that fixedS averages of any operator will be
polynomial inm andS(S11); note thatm is the eigenvalue
of the number operatorn̂ andS(S11) is the eigenvalue o
the Ŝ2 operator. This then leads to simple forms for the ce
troids and variances of fixed~m,S! densities r (m,S)(E)
5^d(H2E)&m,S. Let us point out that a general two-bod
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HamiltonianH5V(2) is defined by the two-body matrix el
ements Vi jkl

s 5a^( i j )suV(2)u(kl)s&a , s50,1 ~note that
u( i j )s&a denotes antisymmetrized two-particle state!. For a
TBRE-s one assumesVi jkl

s 50 and (Vi jkl
s )25Us

2, i.e., the
Vi jkl

s are zero centered random variables with varianceUs
2

~usually the random variables are taken to be Gaussia
nature!. Note that the bar overV’s denotes ensemble averag
Quite similar to the U(N) case~Appendix!, with respect to
the U(N/2)^ SU(2) group, theV(2) will have scalar (n
50), effective one-body (n51), and irreducible two-body
(n52) parts in each spin (s50,1) sector@12,14#. The n
50 parts generate the centroids«(m,S) and obviously they
will be zero on ensemble average. In the dilute limit defin
by V→`, m→`, andm/V→0, theVn52,s50,1 parts gener-
ate the TBRE-s variancess2(m,S) @contributions from the
n51 parts will be smaller at least by the factor (m/V)# and
then,
s2~m,S! ——→
TBRE2s @~V2m/2!~V2m/211!2S~S11!#@m~m12!24S~S11!#

8V~V21!
$@V~V11!/2#U0

2%

1
$S2~S11!2~3V227V16!/213m~m22!~V2m/2!~V2m/221!~V11!~V12!/8 1@S~S11!/2#@~5V23!~V12!~m/22V!m1V~V21!~V11!~V16!#%

V~V11!~V22!~V23!

3@~V~V21!/2!U1
2#5P0~m,S!U0

21P1~m,S!U1
2. ~2!
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Using Eq.~2! it is seen that the TBRE-s variances get smalle
as the spinS is increasing and this trend is independent of
ratio U1

2/U0
2. For example, for V520, m58, and S

5(0,1,2,3,4) thes2(m,S)/s2(m,0) values forU1
2/U0

250.3,
1, and 3 are~1.0, 0.92, 0.77, 0.55, 0.29!, ~1.0, 0.94, 0.84,
0.69, 0.52!, and~1.0, 0.96, 0.88, 0.77, 0.67!, respectively. It
is worth pointing out that the behavior of the dimensio
d(m,S) with respect toS is some what different. They grow
from S50 to S51 and then start decreasing fast. For e
ample, for (V530,m510) the dimensions forS50, 1, 2, 3,
4, and 5 are;43109, ;83109, ;63109, ;23109,
;43108, and;33107, respectively. At this stage it is im
portant to discuss the relationship ofPs(m,S) with the so-
called connectivity factorKs(m,S) studied in@9#. Say a typi-
cal uSa& state is connected toKs(m,S) number of states
uSb& by thes50,1 parts of the two-body interaction and th
variances of the connected matrix elements isUs

2 ~indepen-
dent ofb!. Thens2(m,S)5(s Ks(m,S)Us

2 and this expres-
sion is used by Jacquod and Stone by deriving formulas
Ks(m,S) @9#. Comparing with Eq.~2!, it is expected that
Ps(m,S)5Ks(m,S). It is seen that Eq.~2! gives the expres-
sions for the factorsPs50,1(m,S50) andPs51(m,S5m/2)
that are identical to the results forKs50,1(m,S50) and
Ks51(m,S5m/2) given in Eqs.~B1! and ~B2!, respectively,
of @9#. However, by comparing Eq.~2! with Eq. ~B4! of @9# it
is clearly seen that forSÞ(0,m/2), K(m,S)ÞP(m,S) ~here
one is assumingU0

25U1
25U2!. Thus in these situations, th

variances areP(m,S)U2 but notK(m,S)U2. One reason for
the differences is that the variance of each allowed~nonzero!
e

-

r

m-particle matrix element is notU2 in general but it is a
complicated function of the spinS that is generated bym
spin 1

2 couplings.
It is well verified in a number of numerical example

@8,10,11# that rm,S(E) is in general a Gaussian with expo
nential tails@15#. Then the ground state energy (Eg) for a
given S follows from the so-called Ratcliff prescription@16#
1
2 5*

2`
Eg d(m,S)rm,S(E)dE. Then Eg'2s(m,S)ln d(m,S)

away from the centroid«(m,S). The behavior of the fixedS
variances~decrease with increasingS! and the logarithmic
dependence ofEg on the dimensions, clearly show that
general one gets nearly degenerateS50 andS51 ground
states and otherS ground states will be far above. Thus th
structure of the levels near the ground state for TBRE-s will
be dominated byS50 andS51 as already pointed out in
@8–10#. The precise structure~whetherS50 is the ground
state or theS51! depends on the form of the tails o
rm,S(E). This problem is treated in two different ways i
literature. Here we consider Jacquod and Stone approach
is based on the variances and in Sec. II B we will turn
Kaplanet al.approach that is based on the excess correct
Jacquod and Stone@8,9# carried out detailed numerica
TBRE-s calculations withH5V(2) and observed thatS
50 (S5 1

2 ) is always the ground state for even-m ~odd-m!
systems. This and the fact that theS50 variances are alway
larger thanS51 variances is used in conjecturing that

D[Egs~Smin!2Egs~Smin11!5b@s~m,Smin!

2s~m,Smin11!#
0-2
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whereSmin50 or 1
2, Egs stands for the ground state ener

and b is a free parameter. Now employing the relati
s2(m,S)5K(m,S)U2 it is shown that the conjecture de
scribes very well TBRE-s numerical results. One of the strik
ing observation is the odd-even effect~with respect tom! in
D and theK(m,S) formulas are able to reproduce this effe
However, as pointed out before,s2(m,S) should be in terms
of P(m,S) and, therefore, it is more appropriate to use

D[Egs~Smin!2Egs~Smin11!5bU@AP~m,Smin!

2AP~m,Smin11!#. ~3!

As P(m,1)ÞK(m,1), the question arises is whether Eq.~3!
produces the odd-even effect seen in TBRE-s calculations. In
fact Eq. ~3! does produce the odd-even effect asP(m,S)
contains onlyS(S11) andS2(S11)2 terms~note that these
terms have odd-even effect!. For example, forV516, theD
values given by Eqs.~2! and ~3!, in units of bU, are 0.71,
1.95, 1.65, 2.66, 1.89, 2.9, 1.99, 3.02, 2.04, 3.08, 2.07, 3
2.08, 3.13, 2.09 form52 – 16. Even whenU0

2ÞU1
2, the odd-

even effect is preserved by Eq.~3!.
02613
.

2,

B. Ground state structure in TBRE-s with excess corrections

Alternatively, Kaplanet al. @10# considered shape correc
tions, in terms of the excess parameterg2 , to the Gaussian
form of rm,S(E). For a TBRE, as the third moment vanishe
the important shape parameter is theg2 defined by the fourth
central momentM45^(H2«)4&; g25M4 /s423. Methods
for deriving the expression for exactM4 for fixed ~m,S! are
available in literature@13,17# but they are unwieldy. How-
ever, the behavior ofM4 and, hence,g2 can be understood
by writing V(2) in sz representation and calculating ave
ages, using the binary correlation method described in@1,18#,
over the (m1 ,m2) states introduced just above Eq.~1!; here,
instead of U(N/2)^ SU(2), one isusing the direct sum sub
group U(N/2)% U(N/2). In nuclear physics, with SU~2! giv-
ing isospin, this is referred as proton-neutron formulati
@1#. The binary correlation results, with finitem andV cor-
rections, for the ensemble averaged second and fourth
ments are worked out for a generalk-body Hamiltonian by
Tomsovic@19#. Adopting his results to the present case, o
has@with m5m11m2 andSz5(m12m2)/2#
^@V~2!#2&m1 ,m25S m1

2 D F S V2m112
2 D11GU1

21S m2

2 D F S V2m212
2 D11GU1

21~m1m2!

3@~V2m111!~V2m211!11#@~U0
21U1

2!/4#,

^@V~2!#4&m1 ,m252$^@V~2!#2&m1 ,m2%21 (
k1 ,k250,1,2

$ f ~m1 ,V,k1 ,k2! f ~m2 ,V,22k1,22k2!1g~m1 ,V,k1 ,k2!g~m2 ,V,22k1,2

2k2!1g~m1 ,V,k2 ,k1!g~m2 ,V,22k2,22k1!1h~m1 ,V,k1 ,k2!h~m2 ,V,22k1,22k2!%Rk1k2
;

f ~m,V,k1 ,k2!5(
s50

k2 S V2m1k12s
k1

D S m2s
k1

D S m2s
k22sD 2S V2m

s D S m
s D S V11

s D S V22s11

V2s11 D F S V2s
k2

D S k2

s D G21

;

g~m,V,k1 ,k2!5 f ~m,V,k1 ,k2! without the S V11
s D terms in the summation
een
,

ga-
nd
e

h~m,V,k1 ,k2!5 (
s50

,~k1 ,k2! S m2s
k12sD S m

s D S m2s
k22sD S V2m

s D ,

Rk1k2
5@U1

2#22r@~U0
21U1

2!/4# r , r 5~k1 mod 2!

1~k2 mod 2!;

^@V~2!#p&m,S5@^^@V~2!#p&&m,Sz5S

2^^@V~2!#p&&m,Sz5S11#/d~m,S!, p52, 4.

~4!
Let us point out that in theV→` limit s2(m,S) given by
Eq. ~4! agrees with Eq.~2! and also in thê@V(2)#4& expres-
sion the f’s with s5k2 will dominate. Using Eq. ~4!,
g2(m,S) values are calculated in several examples. It is s
that g2 becomes more negative asS increases. For example
for V520 and m512, the g2 values for S5(0,1,2) are
~20.386,20.391,20.401!, ~20.396,20.401,20.411!, and
~20.406,20.413,20.426! for U0

2/U1
2 taking values 0.3, 1,

and 3, respectively. It should be pointed out that more ne
tive is g2 , the higher will be the ground state. Thus the tre
seen ing2 , though the variation is slow, do point out that th
S50 ground state will tend to be lower thanS51 ground
state. Calculating the dimensions, variances, andg2 values
using Eqs.~1!, ~2!, and~4!, the densitiesd(m,S)rm,S(E) are
0-3
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constructed as corrected Gaussians using the so-c
Cornish-Fisher method@20#. Now applying the Ratcliff pro-
cedure ground state energies and therebyD @see Eq.~3!# are
calculated. It is seen that form512, 20 cases~with V520,
U1

2/U0
250.3, 1, 3! theD'0.01@in units ofs2(m,0)# without

g2 correction while it increases to'0.2 with theg2 correc-
tion. This result is consistent with the conclusions in Kap
et al. work @10#. However, in this work theg2 variation is
much larger~estimates ofg2 for S50, 1 for a four-particle
system are given in@10# and they compare well with thei
numerical results! and this has to do with the fact that the
consider paired states~for example,ai1/2

† ai 21/2
† is a paired

state for two particles and form particles there can be
maximum ofm/2 pairs in a given state! with fixed S. Group
theory for calculating centroids, variances, andg2 for states
with fixed m andS along with a given number of pairs wil
be considered elsewhere.

III. TWO-BODY RANDOM MATRIX ENSEMBLE
IN A SINGLE j SHELL

The random matrix model TBRE-j is the other extreme to
TBRE-s. Here one considers a singlej shell withm-particles
interacting via aJ preserving two-body interaction~J is the
total angular momentum of them fermion system!. With J a
good quantum number, the Hamiltonian matrix divides in
disconnected blocks with each of them labeled byJ. The
dimensiond(m,J) of the ~m, J! block can be determined in
many ways;

(
J

~2J11!d~m,J!5S 2 j 11
m D .

For a TBRE-j the two-particle matrix elementsVj j j j
J2

5^( j j )J2M2uV(2)u( j j )J2M2&, J250,2,...,2j 21 are random
variables~note thatJ2 is two-particleJ value and theV’s are
independent ofM2!. Without loss of generality the SP energ
of the j orbit can be put to zero so thatH5V(2). It is easy to
recognize that TBRE-j has the group symmetry U(2j
11).O(3) with all the m-particle states belonging to th
antisymmetric representation of U(2j 11) and O~3! generat-
ing theJ quantum number. Unlike in the TBRE-s case, here
the scalar operatorsn̂ andJ2 are not sufficient to write exac
expressions for the moments of fixed-J densitiesrm,J(E).
This is related to the so-called integrity basis operators fo
group-subgroup chainG.K; see@21#. However, theory for
good approximate formulas can be developed in the situa
that the system is dilute@j→`, m→`, m/(2 j 11)→0, and
J!(J)max# and the Hamiltonian is complex@i.e., H belongs
to TBRE#. Before discussing the results for fixed-J centroids
and variances for TBRE-j, let us digress and address th
more general problem ofm fermions in severalj orbits and
the H is a J conserving (112)-body Hamiltonian.

A. Fixed-J centroids and variances from the bivariater„E,M …

density

Let us considerm particles in manyj orbits, then the
number of SP statesN5( j (2 j 11). The centroid and vari-
02613
led

n

a

n

ance of the state densityr1(E)5^d(H2E)&m are «H(m)
5^H&m and sH

2 (m)5^@H2«(m)#2&m, respectively. Simi-
larly, for theM densityr2(M )5^d(Jz2M )&m the centroid is
zero and the variancesJz

2 (m)5^Jz
2&m. Let us define the stan

dardized variables Ê5@E2«H(m)#/sH(m) and M̂

5M /sJz
(m). Similarly, H̃ is the traceless part ofH; ^H̃&m

50. It is well established that for a TBRE@also for a (1
12)-body random matrix ensemble#, not only r1(E) and
r2(M ) are close to Gaussian but also the joint bivariate d
sity r12(E,M )5^d(H2E)d(Jz2M )&m is a bivariate Gauss
ian with lower order bivariate cumulant corrections@22#;
note that here the bivariate correlation coefficient is ze
The correctedr12(E,M ) is @with the third moment ofr1(E)
being zero for a TBRE#

r12~E,M !5H 11
k12

2
Ê~M̂221!1Fk40

24
~Ê426Ê213!

1
k12

2

8
~Ê221!~M̂426M̂213!1

k22

4
~Ê221!

3~M̂221!1
k04

24
~M̂426M̂213!G J

3r1;G~E!r2;G~M !. ~5!

Equation~5! is central to our subsequent discussions. In E
~5! G stands for Gaussian and the bivariate cumulantsk12 and
k22 are given by

k12~m!5
^Jz

2H̃&m

sH~m!sJz

2 ~m!
, k22~m!5

^Jz
2H̃2&m

sH
2 ~m!sJz

2 ~m!
21.

~6!

Similarly k40(m) andk04(m) are theg2 values forr1(E) and
r2(M ) densities respectively. As pointed out in@22#, fixed-M
averages of powers ofH can be written as integrals~with
respect toE! involving r12(E,M ). These and the identifica
tion @23# ^^Hp&&m,J52@(]/]M )^^Hp&&m,M#M5J11/2 lead to
simple forms for fixed-J dimensions, centroids, and var
ances,

d~m,J!.S N
mD ~2J11!

A8psJz

3
expS 2

S J1
1

2D 2

2sJz

2 D ,

«~m,J!.F«H~m!2
3

2
sH~m!k12~m!G

1sH~m!
k12~m!

2sJz

2 ~m!
J~J11!, ~7!
0-4
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s2~m,J!.sH
2 ~m!F12

3

2
k22~m!G

1k22~m!
sH

2 ~m!

2sJz

2 ~m!
J~J11!.

A test of the results in Eq.~7! is carried out using the
so-called K112 f p interaction @24# in nuclear (2s1d)12

space. In this examplesJz

2 (z)512, «H(m)5294.16 MeV,

sH
2 (m)5139 MeV2, k12(m)520.088, andk22(m)520.12.

The exact~«, s! values, for example, forJ50, 4, 8, and 12
~in MeV! are ~292.3, 13.3!, ~293.4, 12.3!, ~295.9, 10.2!,
and~2100.5, 6.5! respectively. From Eq.~7! the correspond-
ing results are~292.6, 12.9!, ~293.5, 12.2!, ~295.7, 10.4!,
and ~299.3, 6.6!, respectively. Thus the agreement betwe
the approximate values given by Eq.~7! and the exact
nuclear shell model results is excellent. Note that for thJ
50, 4, 8, and 12 cases, the exact dimensionalities are 11
49 441, 11 975, and 237. Now we will apply the results
Eq. ~7! to TBRE-j, examine the structure of fixed-J centroids
and variances and compare them with the results given
Mulhall et al. @4#.

B. Structure of fixed-J centroids and variances in TBRE-j

Fixed-J centroids, as seen from Eq.~7!, are basically
determined for a TBRE by thek12 bivariate cumulant. Hence
their structure in terms of the basic one-and two-particle m
trix elements is determined by the structure ofk12 in terms
of these basic inputs. This problem is solved for TBRE-j by
carrying out the U(N) decomposition of the Hamiltonian
and that of theJ2 operator using Eq.~A1!. Then the trace
ie

se

-

02613
n

4,

y

-

propagation Eq.~A2! give simple formulas for«H(m),
sH

2 (m), sJz

2 (m), and ^Jz
2H̃&m. For example the unitary de

composition of theJ2 operator and the expression fo

^Jz
2H̃&m are,

J25~J2!n501~J2!n52,

~J2!n505 1
2 n̂~2 j 112n̂!~ j 11!,

~J2!n52⇔~J2! j j j j
n52:J25J2~J211!2~2 j 21!~ j 11!

——→
j @1

~21!J2112 j ~ j 11!~2 j 11!

3H J2 j j

1 j j J ,

^Jz
2H̃&m5 1

3 ^J2Hn52&m5
m~m21!~N2m!~N2m21!

N~N21!~N22!~N23!

3 1
3 (

J2

~2J211!Vj j j j
J2 @J2~J211!

2~2 j 21!~ j 11!#; N5~2 j 11!. ~8!

Note that for a singlej shell there will be non51 parts for
H andJ2 operators. It is useful to add that the propagator

^Jz
2H̃&m in Eq. ~8! reduces tom2/N2 in the dilute limit. Using

Eqs. ~6!–~8! and ~A2! the final result for«(m,J) is easily
obtained. In the dilute limit it takes the form,
«~m,J!→H F m2

~2 j 11!2 (
J2

~2J211!Vj j j j
J2 G2F 3m

2 j ~ j 11!~2 j 11!2 (
J2

~2J211!Vj j j j
J2 @J2~J211!22 j ~ j 11!#G J

1
3

2
H (

J2

~2J211!Vj j j j
J2 @J2~J211!22 j ~ j 11!#

u j ~ j 11!~2 j 11!u2
J J~J11!. ~9!
g

effi-
e-
ify-
It is remarkable to see that, after neglecting the second p
of the first term~for large m the first piece dominates!, the
two terms in the formula~9! are nothing but the first two
terms in the expression derived by Mulhallet al. see Eqs.
~7!–~9! in @4#. Thus the cranking approximation and the u
of Fermi occupancies employed in@4# is equivalent to the
generation of the near bivariate Gaussian form in Eq.~5! for
a TBRE. Therefore, one can use Eq.~5! to go beyond the
simple TBRE-j to TBRE in severalj shells~with H’s preserv-
ing J!.

Fixed ~m, J! variances, as can be seen from Eq.~7!, are
determined by thek22 cumulant. With the unitary decompo
sition of theJ2 operator, it is seen that
ce k22~m!5^~J2!n52^Hn52&2&m/^~J2!n50&msH
2 ~m!.

Therefore, the only unknown quantity in determinin
s2(m,J) is them-particle averagê(J2)n52(Hn52)2&m. This
will be a sixth order polynomial inm as (J2)n52(Hn52)2 is a
six-body operator. The particle-hole symmetry of then52
operators allows one to reduce the seven expansion co
cients of this polynomial into averages in two- and thre
particle spaces. The final expression is obtained by simpl
ing the general results for^Un52Vn52Wn52& given in @1,25#
and applying the approximation given in Eq.~8! for (J2)n52.
The result is,
0-5
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^~J2!n52~Hn52!2&m5Fm~m21!~m22!~m23!~N2m!~N2m21!

N~N21!~N22!~N23!~N24!~N25!

1
m~m21!~N2m!~N2m21!~N2m22!~N2m23!

N~N21!~N22!~N23!~N24!~N25! G
3~2 j ~ j 11!~2 j 11!!A1Fm~m21!~m22!~N2m!~N2m21!~N2m22!

N~N21!~N22!~N23!~N24!~N25! G~2 j ~ j 11!~2 j 11!!B;
f

o
n

-
s
fo

a

re

d
o

co

-

s
’s
n

as

cal-
or-

f

ri-

en-

ds
the
-
te

sed
re-

ari-
s in

the
ral

this
of

for

of
A52(
J2

~2J211!H J2 j j

1 j j J ~Vj j j j
n52:J2!2.

B58 (
J1 ,J2 ,J3

~2J111!~2J211!~2J311!H J1 j j

1 j j J
3H j j J 3

j J2 j

J1 j j
J Vj j j j

n52:J2Vj j j j
n52:J3.

N5~2 j 11!. ~10!

Equation ~10! combined with Eqs.~7!, ~8!, and ~A2! will
give s2(m,J) in terms ofVj j j j

J2 . It is seen that the structure o
s2(m,J) is more complex@compared to«(m,J) in Eq. ~9!#
as Eq.~10! involves 6-j and 9-j symbols. Using the fixed
~m,J! variances one can go beyond the centroids, i.e., bey
the investigations in@4#, and study the role of the Gaussia
widths in generating the dominance ofJ50 ground states for
a TBRE-j. Numerical calculations are carried out for TBREj
with j 5 17

2 and 27
2 . They have confirmed that with centroid

alone one gets somewhat more than 50% probability
ground states to appear withJ50. Equation~9! gives 50%
probability but a correction to it, as pointed out in@4#, en-
hances this probability. However, the moment variances
switched on@using Eqs.~7! and ~10!#, the effects of dimen-
sions start dominating as we need to use the Ratcliff p
scription for locating the lowest state for a givenJ value.
Then it is seen that theJ50 dominance disappears an
rarely J50 states emerge as ground states. It is quite p
sible that:~i! one may have to include@J(J11)#2 terms in
Eq. ~7!; ~ii ! just as in Sec. II B discussion, for TBRE-j also
g2 effects need to be incorporated:~iii ! as argued in@26# the
J50 states may be nongeneric and then constructing a
rected Gaussian form for locating theJ50 ground states
may not be appropriate. Detailed investigations of~i!–~iii ! in
describing theJ50 dominance seen in numerical TBREj
calculations, are beyond the scope of the present paper.

IV. CONCLUSIONS AND FUTURE OUTLOOK

The purpose of the results presented in this paper i
bring out the role of group symmetries in extended TBRE
To this end investigations are carried out for the two e
sembles TBRE-s and TBRE-j. Using the U(N/2)^ SU(2)
symmetry of TBRE-s, expressions for fixed~m, S! variances
02613
nd

r

re

-

s-

r-

to
.
-

are easily derived. It is seen that the variances decreaseS
increases. Relating the propagatorP(m,S) of the variances
with the connectivity factorK(m,S) it is shown that the
Jacquod and Stone prescription forD[Egs(Smin)2Egs(Smin
11) indeed gives the odd-even effect seen in numerical
culations. Going beyond the variances, using the binary c
relation result forg2 , it is shown that even with the Ratclif
prescription one sees the dominance ofS50 ground states
for TBRE-s. In the case of TBRE-j it is shown that its
U(N).O(3) group structure combined with the near biva
ate Gaussian form of fixed-~E, M! densities lead to simple
formulas for centroids and variances. Thus, for TBRE-s the
group symmetry alone gives a simple structure for the c
troids and variances~also g2—note that so far there is no
binary correlation result forg2 of fixed-J densities! but in the
case of TBRE-j in addition to the group symmetry one nee
the random matrix nature of the ensemble as well as
dilute limit conditions. In particular it is shown that the ex
pression for fixed-J centroids derived using the near bivaria
Gaussian nature coincides with the result given in@4# where
the cranking approximation and Fermi occupancies are u
in the derivation. It is pointed out that the conclusions
garding the dominance ofJ50 ground states in TBRE-j
based on centroids alone may not remain valid once v
ances are also included and hence answering question
TBRE-j ~or TBRE with severalj’s with H preservingJ! re-
quires much further study. It should be pointed out that
formulation in Sec. III can be applied to the more gene
TBRE-(j 1 j 2 ...) ~also called in literature TBRE-J; see@1#!. Fi-
nally, it is expected that the investigations presented in
paper will lead to studies of TBRE’s with a wider class
group symmetries and they, just as the TBRE-s @9#, may find
applications in Measoscopic Physics.
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APPENDIX

With respect to the U(N) group a two-body interaction
V(2), defined by the two-particle matrix elementsVi jkl
0-6
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5a^kluV(2)uij &a , decomposes into scalar (n50); effective
one-body (n51), and irreducible two-body (n52) parts
@27#,

Vn505
n̂~ n̂21!

2
V̄; V̄5S N

2 D 21

(
i , j

Vi j i j ,

Vn515
n̂21

N22 (
i , j

z i , jai
†aj ; z i , j5F(

k
Vkik jG

2F ~N!21(
r ,s

VrsrsGd i , j ,

Vn525V2Vn502Vn51⇔Vi jkl
n52. ~A1!
l.
.

e
nd

-

t

.

ta

02613
Similarly a one-body Hamiltonianh(1)5( i n̂ie i decomposes
into hn505n̂ē and hn515( i n̂ie i

1 where ē5N21( ie i and
e i

15e i2 ē. Now the m-particle variances forH5h(1)
1V(2) are given by

s2~m!5
m~N2m!

N~N21! (
i j

H e i
1d i , j1

m21

N22
z i , j J 2

1
m~m21!~N2m!~N2m21!

N~N21!~N22!~N23!
^^~Vn52!2&&m52

~A2!
.

.

P.

of
@1# V. K. B. Kota, Phys. Rep.347, 223 ~2001!.
@2# J. B. French and S. S. M. Wong, Phys. Lett.33B, 447 ~1970!;

35B, 5 ~1971!; O. Bohigas and J. Flores,ibid. 34B, 261
~1971!; 35B, 383 ~1971!; J. B. French, Rev. Mex. Fis.22, 221
~1973!; T. A. Brody, E. Cota, J. Flores, and P. A. Mello, Nuc
Phys. A259, 87 ~1976!; T. A. Brody, J. Flores, J. B. French, P
A. Mello, A. Pandey, and S. S. M. Wong, Rev. Mod. Phys.53,
385 ~1981!.

@3# C. W. Johnson, G. F. Bertsch, and D. J. Dean, Phys. Rev. L
30, 2749~1998!; C. W. Johnson, G. F. Bertsch, D. J. Dean, a
I. Talmi, Phys. Rev. C61, 014311~1999!; R. Bijker and A.
Frank, Phys. Rev. Lett.84, 420~2000!; J. Flores, M. Horoi, M.
Mueller, and T. H. Seligman, Phys. Rev. E63, 026204~2000!.

@4# D. Mulhall, A. Volya, and V. Zelevinsky, Phys. Rev. Lett.85,
4016 ~2000!.

@5# V. K. B. Kota and R. Sahu, Phys. Rev. E64, 016219~2001!.
@6# V. K. B. Kota, R. Sahu, K. Kar, J. M. G. Go´mez, and J. Reta

mosa, Phys. Rev. C60, 051306~1999!; J. M. G. Gómez, K.
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